

Introduction to the project

Incentives to transition to cage-free systems and introduction to the various cage-free systems

Bas Rodenburg, Utrecht University
Project leader

Introduction to the project

https://youtu.be/dQLalJdu_cs

Incentives to transition a cage-free system?

- Increasing societal pressure to ban cage housing for farm animals
- EU petition End the Cage Age taken over by EU parliament: ban from 2027

• EFSA Opinion Welfare of laying hens: cage-free housing recommended

Benefits of cage-free housing over furnished cages

- Additional space per bird and a much larger total floor space
- A large litter area, allowing foraging dustbathing behaviour
- An elevated resting area with perches and/or platforms, allowing resting

· Good quality nest space is provided, allowing nesting and egg laying

Experience with cage-free management is important!

- 6,040 flocks
 176 million hens
 16 countries
- Conventional cages, Furnished cages, Cage-free systems
- Mortality decreases with increasing farmer experience (0.35-0.65% / yr)
- No difference in mortality between systems countries with experience with cage-free

(Schuck-Paim et al., 2021)

Market plays an important role

- In countries that already made the transition to cage-free, the market played an important role
- Netherlands: decision of retailers to stop selling cage eggs decisive step in transition
- Now: cage-free commitment from 2025 eggs and egg products from cage-free systems

Introduction to the various cage-free systems

Floor housing system

Single-tier system

Indoor, free range or organic system

Multi-tier system

Mobile housing system: free range or organic

Laying hens: single-tier system

- Single tier provides nests, feeders, drinkers and resting area (may include perches)
- Litter area next to tier (may include foraging enrichments)

Laying hens: multi-tier system

- Separate tiers provide nests, feeders, drinkers and (elevated) resting area
- Litter area on floor (may include foraging enrichments)

Laying hens: free range and organic

- Single-tier or multi-tier system combined with free range access
- Often a covered veranda is used for transition to free range
- Extra opportunities for foraging (vegetation, insects)

Pullet rearing: crucial

- Pullets reared for multi-tier systems need to learn how to navigate the system
- Early access to the system and ramps to move up and down help
- Continuous access to litter is important

Match between rearing and laying environment important

- Floor housing / single-tier rearing system > Single-tier laying system
- Multi-tier rearing system > Multi-tier laying system
- Free range or organic flocks: early access to range, exposure to daylight

Smooth transition from rearing farm to laying farm enhances the chance of a successful cage-free flock

www.bestpracticehens.eu

Project Leader: <u>t.b.rodenburg@uu.nl</u>

Communication Coordinator: ecovalia.projects@ecovalia.org

Thank you for your attention!

Facebook: bestpracticehens Twitter: @BestHens Linkedin: bestpracticehens

Economics and market

Transition towards cage-free systems for laying hens

Peter van Horne

Wageningen University and Research

Content

Current Situation housing systems

- EU and selected countries

Economics:

- Production costs alternative systems / Aviary

Market:

- Market shell eggs / egg products

Farm income

- Market / Farm egg prices

Conclusions and Discussion

Share cage systems in main Egg producing countries EU

Below 10% in cage:

- Austria
- Sweden
- Germany
- Netherlands
- Denmark

EU-27 in 2021:

Total 376 million laying hens

Non cage is 55%, of which:

- Barn 36% - Free range 12% - Organic 7%

Source: IEC (figure) and European Commission (data EU-27)

Development housing systems laying hens in Target countries

Spain 2021: 73% hens in cages

Portugal 2021: 75% hens in cages

Belgium 2021: 36% hens in cages

Poland 2021: 76% hens in cages

Funded by the European Union

Production costs eggs: difference (%) with Enriched Cage.

Alternative is more expensive:

- Young hen(floor rearing)
- FeedHigher feed intake
- Labour More labour input
- Poultry House
 Lower Density

Increase in product	ion costs: Ne	etherlands/Ge	ermany
	Barn/Aviary	Free Range	<u>Organic</u>
Percentage	15	35	115
Per egg (eurocent)	0.85	1.95	6.75
Increase in product	ion costs: Sp	ain and Polan	nd
Percentage	13	31	
Per egg (eurocent)	0.72	1.70	

Source: Wageningen Economic Research

Production cost: details Barn/Aviary system

Production costs (euro ct/kg egg) in Enriched cage and Aviary.

Barn/ Aviary:

- Young hen + 45 a 50 cent, 17 wk hen
- Feed costs
 feed intake/day + 6 gr
- Labour costs
 Less hens / worker
- House and equipment higher Investment/hen

	Enriched cage	Barn/Aviary
Hens/worker (number)	70000	40000
Density (hens/m2 house)	30	18
Average rate of Lay (%)	93.6	91.9
Feed intake/hen/day (gram)	112	118
Investment house+equipment (Euro/m2)	25	31

Source: Wageningen Economic Research

Mainstream of transition

From Enriched Cage (code 3) to Barn (code 2)

- Barn with Aviary system
- According EU regulations

Conditions:

- High Quality rearing of young hens
- Good Stockmanship

Good Performance is base for low Production costs

Retail market of shell eggs

Differences between countries in North-West Europe

Netherlands, Germany and Belgium: cage eggs very low, mainly barn eggs

France. In transition. High share of free range eggs

Denmark: high share of organic

UK: Dominance of free range, barely any barn

Focus on France

Market shell eggs is changing

France. In transition. Rapid decrease in share of cage eggs

Retail: Free range has highest share. Growing share of barn eggs

Focus on France

Market Egg processing is changing

France. In transition. decrease in share of cage eggs. Barn and Free Range are growing

ITAVI 2021: 35% of eggs go to processing, of which 47% non cage eggs.

Market Europa Foodservice and processing

Companies in foodservice, food processing and retail who will source only cage free eggs in coming years. Examples:

Production costs versus Market price (farm level)

Code	System	Cost increase vs Enriched Cage (%)	Market bonus
3.	Enriched cage		
2.	Barn	15-20	+
1.	Free Range	30-40	++
0.	Organic	200-250	++++

Countries with mainly brown layers (Spain, Poland, France, Portugal) have an additional option:

- Production of white eggs are 6 to 8% lower compared to brown.
- Option: transition from Cage/Brown eggs to Barn/white eggs will have a lower increase in production costs to move from cage to Barn

Market prices in the Netherlands 2014-2022

Market price Cage egg vs Barn egg (euro/kg eggs)

cage white - barn white - difference

Average 2016 till 2021: Cage egg = 0,88 Euro/kg / Barn egg = 1,05 Euro/kg Difference 0,17 Euro/kg = Production costs difference (0,15 Euro/kg)

Higher income with Barn system in the Netherlands

Funded by the European Union

Conclusions and Discussion

Conclusions:

- Large differences within the EU on share of production in cages
- Extra Production cost Barn +13 to 15% (= 0.72 to 0.85 ct per egg)
- Conditions: quality rearing and good stockmanship
- Market egg products (retail, food service en food processing) will grow in coming years and move towards sourcing barn eggs.

Remarks:

- Around 2026 is cage system depreciated (from 2011 is 15 years)
- Assumed use of existing poultry house.
- Environment: ammonia emission / permits?
- Current market with inflation and low purchasing power? Impact?
- Expected new Legislation in the EU?

Thanks for your attention

www.bestpracticehens.eu

Poultry Economist: peter.vanhorne@wur.nl

Project Leader: <u>t.b.rodenburg@uu.nl</u>

Communication Coordinator: ecovalia.projects@ecovalia.org

Facebook: bestpracticehens Twitter: @BestHens Linkedin: bestpracticehens

Best Practices for pullet rearing

Anja Brinch Riber Aarhus University

Why the rearing period of pullets is so important...

"It is easy to make something good into crap, but difficult to make crap into something good."

- Danish egg producer, 1st Feb 2023

Source: Anja Brinch Riber, Aarhus University

Practice abstracts relevant for the rearing period

- The main output of this project is 31 Practice Abstracts on a wide range of topics providing practical guidelines on how to house and manage pullets and laying hens in cagefree systems.
- The practice abstracts combine knowledge from
 - scientific literature
 - management guides and other technical information
 - input gained during interviews and discussions with relevant stakeholders

https://bestpracticehens.eu/materials/

Training of farmer and staff

- Knowledge and skills to operate cage-free systems can be acquired and maintained by appropriate training
- Trainings should include:
- How to comply with relevant (local) legislation
- How to recognize normal behaviour and good health
- How to recognize abnormal behaviour and disease
- How to quickly take effective corrective measures
- How to seek additional help from experts (e.g. veterinarian, feed advisor) if necessary
- Contact local organizations which offer trainings (e.g. chambers of agriculture, farmers' associations, breeding and barn equipment companies)
- Keep records of own training and staff training
- Make sure everyone is up-to-date trained

Inspection and stockmanship

Source: WUR

- By frequent and regular inspections, problems can be detected at an early stage
- Pullets become habituated and show less fear reactions towards humans
- Inspect pullets at least two times daily at different times of the day
- Inspections should include at least:
 - ✓ Functioning of automatic supply systems (feed, water, light, ventilation)
 - ✓ Condition of droppings and litter quality
 - ✓ Body condition and growth variation within the flock
 - ✓ Behavioural observations: distribution, activity, sounds
 - ✓ Identification of sick or injured birds
 - ✓ Removing dead birds and recording mortality
- See the Best Practice Hens website for an example of a detailed checklist!

Funded by

the European Union

Welfare assessment

Funded by the European Union

Pullet health

Source: Fair Poultry

- Disease prevention is better than treatment!
- Plan regular visits and consultation with a veterinarian specialized in poultry
- Aspects that need special attention:
 - ✓ Implementation of a proper vaccination program (e.g. against respiratory and intestinal infections)
 - ✓ Sufficient time (2 weeks) between revaccinations to allow for developing protective immunity
 - ✓ Efficiency of coccidiosis vaccination: increased by providing high quality chick paper

Enrichment

Source: Tina Bøje Clausen, ØkologiRådgivning Danmark

- Provide pullets with appropriate (i.e. biological relevant) enrichment to encourage activity and natural behaviours, including foraging
- Enrichment during rearing reduces the risk of feather pecking during the laying phase
- Examples of suitable enrichment:
 - ✓ Pecking blocks
 - ✓ Bales or baskets of alfalfa, straw or hay
 - ✓ Provision of whole grain in the litter
 - ✓ Dark brooders

Dark brooders

- Brooders are low energy consuming hot plates surrounded with a curtain => dark and warm shelters.
- Chicks go under brooders to warm up or rest, exactly as they use the hen to thermoregulate behaviourally under natural conditions.
- Reduced room temperature 20-24 °C ensures good use and energy saving.
- Brooders reduce
 - √ fearfulness
 - ✓ disturbances during sleep
 - ✓ risk of development of feather pecking and cannibalism

the European Union

Litter

Source: Mona Giersberg, Utrecht University

- Provide constant access to litter substrate
- High-quality litter stimulates the pullets to scratch, forage and dustbathe, and reduces the risk of feather pecking
- Litter absorbs faeces on solid floor
- Examples of suitable litter material:
 - ✓ Wood shavings
 - √ Sand
 - ✓ Peat
 - √ Straw
 - ✓ Chick paper (when chicks are confined in the system)
- Monitor litter quality!
- Frequent scratching by the pullets, automatic litter scrapers and floor heating can improve litter quality

Perches

Source: Mona Giersberg, Utrecht University

- Pullets with early experience of perch use show high flexibility and skills in the use of multi-tier systems during lay
- Ensure perch access at an early age
- Providing ramps will help the pullets to access elevated structures
- It can be beneficial to use similar perches in the rearing system and during lay
 - ✓ Especially the use of round, metal perches requires skills that hens need to develop during rearing

Stocking density

Source: WUR

- High stocking density during rearing is a risk factor for feather pecking during lay
- Each pullet should have sufficient space to express its natural behaviour: e.g. feeding and drinking, foraging, resting, dust bathing, preening and wing flapping
- Ideal stocking densities (at the end of rearing):
 - ✓ White hybrids: 10-15 birds/m2
 - ✓ Brown hybrids: 9-13 birds/m2

Air quality and thermal environment

Source: Mona Giersberg, Utrecht University

- Avoid high levels of dust, NH3 (< 10-20 ppm) and CO2 (< 1500-3000 ppm)
- Ensure adequate ventilation
- House chicks at an appropriate temperature after arrival at the rearing farm
- Whole house heating or spot heating (e.g. with dark brooders)
- Check the floor temperature before adding litter
- Monitor chick behaviour:
 - ✓ Too warm: dispersal away from the heat source, panting
 - ✓ Too cold: huddling close to the heat source, emitting stress calls

Beak trimming

Source: WUR

- Beak trimming causes acute and chronic pain and distress in chicks
- It needs to be phased out
- Providing optimal environmental conditions decreases the risk of feather pecking and renders beak trimming superfluous
- Factors that decrease the risk of feather pecking:
 - ✓ Good health; adequate feed (amount, ingredients, structure); adequate environmental enrichment; litter (availability, quality); adequate light (intensity, quality); adequate stocking density; adequate air quality
- Phasing out cages and beak trimming can be applied in parallel

See the Best Practice Hens website for detailed information and useful links!

https://bestpracticehens.eu/materials/

www.bestpracticehens.eu

t.b.rodenburg@uu.nl ecovalia.projects@ecovalia.org

Facebook: bestpracticehens Twitter: @BestHens Linkedin: bestpracticehens

Best Practices for laying hens

Mona Giersberg
Utrecht University

Inspection and stockmanship

Source: Vera Bavinck, Fair Poultry

Laying hen health

Source: Fair Poultry

- Disease prevention is better than treatment!
- Plan regular visits and consultation with a veterinarian specialized in poultry
- Aspects that need special attention:
 - ✓ Apply an effective biosecurity protocol to prevent infections
 - ✓ Monitor and control red mites (prophylactic treatment of the equipment with silica powder is recommended)
 - ✓ Monitor and target infections with endoparasites (worms: Ascaridia, Heterakis, Capillaria)
- See the Best Practice Hens website for detailed information on endoparasites and faeces monitoring of worms!

Feeding equipment and feeding

Source: WLIR

- All hens must have access to the feeder and feed without competition (at least 10 cm feeding space/hen)
- 6-7 feeding times/day and block feeding are recommended
- No feeding times during the times hens lay their eggs (hens must not be attracted away from the nests)
- Change to another feed phase should be determined by body weight, feed intake, egg yield and egg weight (not by age)
- Provide mashed feed with sufficient protein of good quality to decrease the risk of feather pecking
- For specific advice on diet formulation, contact your feed supplier!

Drinking equipment

Source: Mona Giersberg, Utrecht University

- Disinfect the drinker lines or other drinking sources at least 4 h prior to arrival of the hens
- Check drinkers regularly:
 - ✓ Test individual nipples for presence of water and absence of leaks
 - ✓ Check the water pressure of the drinking lines in the front and back of the house
- Nipple drinkers in front of a row of nest boxes stimulate hens to visit the nest boxes
- Light intensity near the drinking lines should be about 20 lux

Enrichment

- Provide hens with appropriate (i.e. biological relevant) enrichment to encourage activity and natural behaviours, including foraging
- It is highly recommended to provide enrichment material routinely and preventively - not only as corrective measure when feather pecking is observed

Enrichment - Smartphone video

https://youtu.be/3GQ8UgZdi5M

Litter

Source: Mona Giersberg, Utrecht University

- Provide constant access to litter substrate
- Too much litter can lead to floor eggs
- Monitor litter quality!
- Frequent scratching by the hens,
 automatic litter scrapers and floor heating
 can improve litter quality

Perches

Source: Vera Bavinck, Fair Poultry

Nests

Source: Mona Giersberg, Utrecht University

- Provide hens with secluded nests (with curtains/nest flaps)
- Nests should be dark (about 1 lux inside)
- A platform of at least 30 cm width in front of the nests offers easy access to the nests
- An expel system allows for closing the nests during night (prevents hens from sleeping in the nest and soiling them)
- Consider opening seclusions of nest at the corners of a row and blocking corners when problems with smothering occur
- LED lights under the lowest tier of multitier system and an adequate amount of litter can prevent floor eggs

Lighting

Source: Mona Giersberg, Utrecht University

- Spread light evenly throughout the different areas of the barn; warm white light (2700-3500K) is preferred
- Provide LED or a light source with a photo flicker frequency of 100Hz or higher
- Provide a light-dark schedule of 14-16
 hours light and 6-8 hours dark to promote
 egg production
- The dark phase should be preceded and followed by a gradual reduction/increase of light over 15-30 min
- Provide a light intensity in the litter area of about 40 lux
- Dimming the lights should not be standard practice; it should only be considered when feather pecking or significant smothering start to develop

Stocking density

Source: Fair Poultry

Funded by

the European Union

- Consider lower stocking densities than determined by law (9 birds/m2)
- Practical experiences indicate that lower stocking densities reduce the risk for feather pecking
- Adequate stocking densities always need to be combined with an adequate dimensioning of other resources (e.g. adequate feeder space, perch length or nest area)

Air quality and thermal environment

- Keep the temperature in the house at about 18-22 C
- Avoid high levels of dust, NH3 (<10-20 ppm) and CO2 (<1500-3000 ppm)
- Ensure adequate ventilation (minimum air exchange rate: 0.7 m³/h/kg)
- Changing specific climate settings is a specialist's job!

See the Best Practice Hens website for detailed information and useful links!

https://bestpracticehens.eu/materials/

www.bestpracticehens.eu

t.b.rodenburg@uu.nl

ecovalia.projects@ecovalia.org

Facebook: bestpracticehens Twitter: @BestHens Linkedin: bestpracticehens

Round table

Moderator:

Frédéric Vincent,

DG SANTE, European Commission

- · Pekka Pesonen, Secretary General, COPA-COGECA
- Birthe Steenberg, Secretary General, Association of Poultry Processors and Poultry Trade in the EU (AVEC)
- Fabrizio Fabbri, Sustainability Policy Manager,
 European Community of Consumer Co-operatives
 (Euro Coop)
- Jørgen Nyberg Larsen, CEO, Danish Egg Association;
 Secretary General, European Egg Packers and Traders Association (EEPTA) and Board member, EU of Wholesale in Eggs, Egg-Products, Poultry and Game (EUWEP)
- Olga Kikou, Head of Compassion in World Farming EU
- Maya Cygańska, Programme Officer, Eurogroup for Animals

